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Abstract. In this paper we study several means of compensating for thermal lensing which, otherwise,
should be a source of concern for future upgrades of interferometric detectors of gravitational waves. The
methods we develop are based on the principle of heating the cold parts of the mirrors. We find that
thermal compensation can help a lot but can not do miracles. It seems finally that the best strategy for
future upgrades (“advanced configurations”) is may be to use thermal compensation together with another
substrate materials than silica, for example sapphire.

PACS. 04.80.Nn Gravitational wave detectors and experiments – 78.20.Nv Thermooptical
and photothermal effects

1 Introduction

Large scale interferometric detectors of gravitational
waves such as LIGO [1] or VIRGO [2] are currently under
achievement. Their first data taking should begin in a few
years from now. But from their planned sensitivity and
from what is currently known from astrophysical sources,
direct detections of gravitational waves is far from sure to
happen with this first generation of interferometers. Plans
for improving the sensitivity are already being developed,
and the design of second generation interferometers is well
advanced [3]. Among the noises that have to be lowered,
the shot noise is one of the fundamental ones. It is indeed
the dominant one in the high frequency region (typically
above 1 kHz) of the sensitivity of first generation interfer-
ometers. The shot noise improvement does not amount to
naively increase the power of the laser source for example,
since the mirrors of the interferometer have low but non
zero absorptions. This results in thermal gradients in the
mirrors and a possible degradation of the detector per-
formance. Thermal effects in mirrors have been shown to
be under control for the present design of interferometric
detectors [4,5] but they are likely to be one source of con-
cern for future upgrades [6] and even to introduce a new
source of noise via the coupling of laser power fluctuations
to absorption asymmetry in the interferometer arms [7].
Indeed, lowering the shot noise limited sensitivity by one
order of magnitude means increasing the circulating pow-
ers by two. The planned circulating powers in VIRGO for
example are of the order of 15 kW stored in the kilomet-
ric cavities and about 1 kW crossing the (silica) substrates

a e-mail: hello@lal.in2p3.fr
b and VIRGO collaboration

of the cavity input mirrors. The measured absorptions in
the silica substrates are about 1 ppm/cm for the Heraeus
311SV [8], and the best absorptions in the coatings have
been measured to be about 1 ppm [9–11]. With these fig-
ures, there will be about 25 mW dissipated in the input
mirrors (10 mW due to absorption in the substrate and
15 mW due to absorption in the coating). This gives rea-
sonable losses (mainly due to the thermal lensing effect)
which does not affect too much the sensitivity. But, it is an
other story if the circulating powers increase by as low as a
single factor 10, for example if we keep the interferometer
as it is, and simply upgrade the laser to a 10 times more
powerful one (upgrade from 10 W to 100 W in the case of
VIRGO). In the current design of “advanced LIGO” [12],
a laser source of about 100 W is planned and hundreds of
kW are planned to be stored on the high finesse arm cav-
ities (about 500 kW in case of silica mirrors up to about
800 kW in case of sapphire mirrors). Clearly, at a time
when R&D is going to be funded for advanced configu-
rations of gravitational-wave detectors, means have to be
investigated in order to control the induced thermal lens-
ing which otherwise could be disastrous.

The thermal lensing takes its source in the appearance
of temperature gradients in the mirrors, these gradients
being due to the non uniform beam intensity crossing the
mirrors or hitting the coatings. In this article, we develop
some means to decrease these gradients. The basic idea is
very simple: we have to heat the “cold” parts of the mir-
rors in order to homogenise the temperature field. This
can be done by an external light source with a proper
profile, at a proper wavelength, and being absorbed by
the parts of the mirror that are not heated by the main
(about Gaussian) beam itself, or by a thermostat system
that fixes the external temperature of the mirrors to some
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value (principle of the “electric blanket”). Note that the
implementation of such a concept is planned for “advanced
LIGO” [12]. The aim of the article is of course not to
provide a technical solution to this problem but rather
to indicate the prospects of the idea of compensating for
temperature gradients by heating the mirrors (some ideas
about practical implementations of thermal compensation
can be found at [13]). First we will recall how we estimate
the temperature field and the induced thermal lens for a
mirror heated by a Gaussian beam either by absorption in
its substrate or by absorption in its coating and suspended
in vacuo. We will then give some orders of magnitude of
the lensing effect and related losses for first generation in-
terferometer and then for an upgrade. We will take the
VIRGO numbers for the numerical evaluations, but with-
out really a loss of generality. For the upgrade we will
assume simply a 100 W laser instead of a 10 W laser so
all the circulating powers have to be multiplied by 10, so
10 kW crossing the input mirrors and 150 kW stored in-
side the long cavities. In a second part, we will consider
the case of a mirror heated by an extra beam with a ring-
shaped profile as the one roughly produced by a battery of
diodes located all around the mirror (radial heating of the
mirror). We will then consider the case of a beam coaxial
with the main beam and again with a ring-shaped profile
(in this case we have to take into account the damping of
this beam due a priori to a strong absorption along the
mirror axis). Finally we will consider the case of a mir-
ror with its lateral side “in contact” with a thermostat
of fixed temperature. In each case we will compute the
losses of the mirror, for a one way propagation of a per-
fect TEM00 beam through the mirror (and so experiencing
the thermal lensing), for various absorbed powers from the
external light source or various thermostat temperatures
(the main parameters of the studies), in order to look for
an optimum (minimal losses). We will also consider briefly
the case of sapphire substrates, instead of silica ones, but
the substrate materials choice will not change our conclu-
sion. We will finally discuss the influence of the (main)
beam size.

2 Temperature and thermal lens in a mirror

2.1 The mirror, the Heat equation and the boundary
conditions

We consider an long cavity input mirror: a silica substrate
of width h ' 10 cm and radius a ' 20 cm with a reflec-
tive coating located in the intra-cavity side. The mirror is
heated by a “laser” beam, assumed in this part to be a
perfect TEM00 beam with a waist w0 ' 2 cm either in the
substrate, where the circulating power is Psub, or in the
coating, where the power is Pcoat. The coating, modelled
as a very thin layer, is located at z = −h/2 (see Fig. 1).

We will note α the lineic absorption coefficient in the
substrate and ε the absorption coefficient in the coating. If
alone in vacuo, the mirror can only loose heat by radiation.
Fortunately the temperature rise in the mirror is supposed
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Fig. 1. Heating of a cylindrical mirror by a Gaussian beam.
The mirror can absorb light power in its coating (cavity side)
and in its substrate.

to be moderate so the radiative heat flux can be linearized
(this will be assumed in all the paper):

F = σ
(
T 4 − T 4

e

)
' 4σT 3

e (T − Te) (1)

where Te is the temperature of the vacuum tank (supposed
uniform) and σ is the Stefan constant (corrected for silica
emissivity). In this part, starting from now, we will note
T not for the absolute temperature, but its deviation from
Te (T−Te −→ T ); it is valid since everything is now linear.
The steady-state Heat equation to solve for the mirror is
then:

−K∆T = αI(r) (2)

together with the boundary equations:

−K∂T

∂r
(r = a, z) = 4eσT0

3T (r = a, z) (3)

−K∂T

∂z
(r, z = h/2) = 4eσTe3T (r, z = h/2) (4)

−K∂T

∂z
(r, z = −h/2) = εI(r)− 4eσTe3T (r, z = −h/2).

(5)

The linearisation of thermal equations (boundary condi-
tions) implies that we can study separately the different
sources of heating: absorption by the coating or the sub-
strate of the Gaussian beam or of any other beam. Note
that, in equation (2), we have neglected the possible atten-
uation of the beam through the mirror. This is of course
valid since we consider here only the main laser beam for
which the substrate is a low loss one. We will have to
take into account this effect for auxiliary beams if their
wavelength is within absorption bands of silica.

2.2 Absorption in the coating

If we consider only absorption in the coating, then the
Heat equation (2) becomes the homogeneous one ∆T = 0,
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a general solution of which being expressed as a Dini series:

T (r, z) =
∑
m

(
Amekmz +Bme−kmz

)
J0(kmr), (6)

which respects well the cylindrical symmetry of the prob-
lem. The first boundary condition (3) shows then that the
coefficients ζm = a× km are the zeros of the function

xJ1(x)− τJ0(x) = 0, (7)

where τ is the reduced radiation constant: τ = 4eσT 3
e a/K.

The functions J0(kmr) are then a complete set of orthog-
onal functions, for functions defined in [0, a], with scalar
products given by [14]∫ a

0

J0(kmr)J0(knr)rdr =
1
2
a2

(
1 +

τ2

ζ2
m

)
J0(ζm)2δnm.

(8)

The coefficients Am and Bm are then given by the two
last boundary conditions (4) and (5), and we find finally
the temperature:

T (r, z) =
∑
m

εpma

K
e−kmh/2a

× (ζm − τ)e−km(h−z) + (ζm + τ)e−kmz

(ζm + τ)2 − (ζm − τ)2e−2kmh
J0(kmr) (9)

where the pm are the coefficients of the Dini expansion of
the intensity I(r)

I(r) =
∑
m

pmJ0(kmr). (10)

The pm are then given by, taking account the normalisa-
tion condition of equation (8):

pm =
2
a2

1
1 + τ2/ζ2

m

1
J0(ζm)2

∫ a

0

I(r)J0(kmr)rdr. (11)

In this section we consider only the heating by the main
beam (assumed to be a perfect TEM00 of power P )

I(r) =
2P
πw2

0

e−2r2/w2
0 (12)

so that pm can be computed as

pm =
P

πa2

1
1 + τ2/ζ2

m

1
J0(ζm)2

e−k
2
mw

2
0/8 (13)

at the condition a� w0 [15].
The optical path distortion due to thermal lensing is

then given by [16]:

ψ(r) =
dn
dT

∫ +h/2

−h/2
T (r, z)dz (14)

where dn/dT is the thermal index coefficient of the sub-
strate materials. After straightforward integration, we find

Ψ(r) =
dn
dT

a

K

∑
m

εpm
km

× 1− e−kmh

(ζm + τ) − (ζm − τ)e−kmh
J0(kmr). (15)

Some quantitative results and figures are given below.

2.3 Absorption in the substrate

In this case we have to solve the full equation (2). For this
purpose, we add to the general solution equation (6) of
the homogeneous equation a particular solution. A par-
ticular solution of equation (2) is easily found to be∑
m(αpm/Kk2

m)J0(kmr) so that the complete solution is

T (r, z) =
∑
m

(
Amekmz +Bme−kmz +

αpm
Kk2

m

)
J0(kmr).

(16)

The boundary condition (3) gives again that km×a is the
mth zero of xJ1(x) − τJ0(x) and the two others (in fact
the same) give the coefficient Am = Bm. The temperature
is finally

T (r, z) =
∑
m

αpm
Kk2

m

×
(

1− τ e−km(h/2−z) + e−km(h/2+z)

(ζm + τ)− (ζm − τ)e−kmh

)
J0(kmr). (17)

By using equation (14), we find also the thermal lens

Ψ(r) =
dn
dT

∑
m

αpm
Kk2

m

(
h− 2τ

km

1− e−kmh

(ζm + τ) − (ζm − τ)e−kmh

)
× J0(kmr). (18)

2.4 Numerical examples with VIRGO and VIRGO
“upgrade”

We give in this part some examples of typical temperature
fields and thermal lensing in the VIRGO context. As the
thermal theory is linear, we first give results separately
for the cases of absorption in the coating and in the sub-
strate for unity absorbed power. In order to quantify the
impact of thermal lensing on the VIRGO performance we
compute, as a figure of merit, the losses L induced by the
thermal lens. These losses are computed as the deviation
from unity of the coupling coefficient of a perfect nor-
malised (power unity) TEM00 beam propagating through
the mirror, so experiencing the thermal lens, to the same
TEM00 beam. The coupling coefficient is nothing but the
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Fig. 2. Upper left: temperature field for 1 W absorbed in the
coating. Upper right: temperature field for 1 W absorbed in
the substrate. Lower left: the thermal lens profile (optical path
difference) for 1 W absorbed in the coating. Lower right: the
thermal lens profile for 1 W absorbed in the substrate.

squared modulus of the inner product between the two
beam complex amplitudes. We have then

L = 1−
∣∣∣∣∫ ∞

0

ψ00(r)e
2iπΨ(r)

λ ψ00(r)2πr dr
∣∣∣∣2 (19)

where ψ00(r) =
√

2/πw2
0 exp(−r2/w2

0) is the amplitude of
the normalized TEM00 beam.

In Figure 2 we can see the temperature fields and
the corresponding thermal lens profiles for 1 W absorbed
respectively in the coating and in the substrate. We re-
call that, although the temperature fields are different for
the two cases, with a maximal temperature rise around
10 K per absorbed Watt in the coating and less than 3 K
per absorbed Watt in the substrate, the thermal lenses
are very similar, with, in both case a maximal optical
path difference (OPD) about 3 µm per absorbed Watt.
In the planned case for VIRGO, we will have εPcav '
10−6 × 15× 103 ' 15 mW absorbed in the cavity mirror
coatings and αhPsub ' 10−6×10×103 ' 10 mW absorbed
in their substrates, so the corresponding maximal OPD is
about 7.5× 10−2 µm. If, in case of upgrade, for example
the laser power is increased by one order of magnitude, all
the absorbed powers increase accordingly. It will be then
rather 100 mW that will be absorbed in the coating and
the same amount in the substrate, so the corresponding
maximal OPD is about 0.75 µm (see Fig. 3). If now we
compute the induced losses in the case of VIRGO, we find
L ' 1.7 × 10−3, which is reasonable, and in the case of
the upgrade L ' 0.16 which is disastrous. The situation
seems a little better if we discard the parabolic part (ob-
tained by a fit of the thermal lens in the mirror central

Fig. 3. Upper left: temperature field for 15 mW absorbed in
the coating and 10 mW in the substrate (typical VIRGO num-
bers). The temperature scale is in K. Upper right: temperature
field for 150 mW absorbed in the coating and 100 mW in the
substrate (VIRGO upgrade numbers). The temperature scale
is in K. Lower left: the thermal lens profile (optical path dif-
ference) for 15 mW absorbed in the coating and 10 mW in the
substrate (typical VIRGO numbers). The OPD scale is in µm.
Lower right: the thermal lens profile for 150 mW absorbed in
the coating and 100 mW in the substrate (VIRGO upgrade
numbers). The OPD scale is in µm.

part) from the thermal lens. Indeed, a parabolic lens ef-
fect can be compensated for by a proper matching lens
at the input of the interferometer. Of course, this works
only if the thermal lensing is well symmetric between the
input mirrors of the kilometric cavities, otherwise it will
be impossible to compensate for parabolic parts of both
thermal lenses by some input matching optics. In this case,
the losses become L ' 2.5 × 10−4 in the case of VIRGO
and, in the case of VIRGO upgrade, L ' 2.2×10−2 which
is still too high. These results clearly call for decreasing
the thermal gradients in case of (even minimal) upgrade.

NB: in the following, all the numerical results involves
the “VIRGO upgrade” case (Psub ' 10 kW and Pcoat '
150 kW) and the up-to-date values for the absorption co-
efficients (ε ' 1 ppm and α ' 1 ppm/cm), except the final
ones given for the “advanced LIGO” configuration.

3 Compensation of thermal effects
by absorption in the substrate
of a ring-shaped beam

In this section, we will try to solve the thermal gradi-
ent problem by heating the external part of the mirror
by a ring-shaped beam, in addition of the main Gaussian
beam, which is always supposed to be absorbed in the
coating and in the substrate. We model the intensity of
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the extra beam as

Ie(r) =

{
0 if r < ae
I0 if ae ≤ r ≤ a

(20)

where I0 is constant. The total power in the beam is then

Pe = I0π
(
a2 − a2

e

)
. (21)

If the ring-shaped heating zone is obtained with the help
of a number of diodes located all around the mirror, then
the quantity a − ae represents nothing but the penetra-
tion length (related to the lineic absorption of the diode
wavelength) of these beams in the substrate.

There is thus an extra source of heating in the sub-
strate with respect to the previous case. The temperature
field due to absorption of light in the substrate is then
the superposition of the one computed in Section 2 and
the one due to absorption of the ring-shaped beam. For
the later, the solution is essentially the same, except that
α has to be replaced by the lineic absorption αe for the
wavelength of the extra beam, and the coefficients of the
Dini expansion of the intensity have to be changed. Let’s
note p

(e)
m the coefficients related to Ie(r). According to

equation (11), we have then

p(e)
m =

2
a2

1
1 + τ2/ζ2

m

I0
J0(ζm)2

∫ a

ae

J0(kmr)r dr. (22)

By direct integration of xJ0(x) in xJ1(x) and by substitu-
tion of I0 by the corresponding power Pe, we have finally

p(e)
m =

Pe
π (a2 − a2

e)
2ζm

τ2 + ζ2
m

1
J0(ζm)2

×
(
J1(ζm)− ae

a
J1(ζmae/a)

)
· (23)

From equation (17), we can then write the total tempera-
ture field due to absorption in the substrate:

T (r, z) =
∑
m

αpm + αep
(e)
m

Kk2
m

×
(

1− τ e−km(h/2−z) + e−km(h/2+z)

(ζm + τ) − (ζm − τ)e−kmh

)
J0(kmr). (24)

In the same way, we obtain the thermal lensing profile by
substituting αpm by αpm + αep

(e)
m in equation (18). The

expressions for the temperature field and thermal lens due
to absorption in the coating are of course unchanged.

The impact of the supplementary heating by the extra
beam depends on two parameters, the radius ae which in-
dicates which size of the mirror is heated and the power
of the beam, or, better, the absorbed power in the mirror
αehPe. In order to optimise the situation, Figure 4 shows
the mirror losses as a function of the radius ae, the ab-
sorbed power being fixed for each value of ae to the value
that minimizes these losses. We see clearly that there is
an optimum at ae ' 2 cm, that is the numerical value of

Fig. 4. Losses vs. the inner radius ae of the auxiliary beam.

Fig. 5. Losses a as a function of the power absorbed from the
extra beam. The losses are minimal for the quite large power
Pabs ' 38 W.

the waist w0 of the main beam. Henceforth, we set then
ae = 2 cm. Figure 5 shows the mirror losses as a function
of the absorbed power. We see then that the heating by
the ring-shaped beam dramatically improves the situation:
the losses can be decreased from the (unacceptable) value
L ' 0.16 down to L ' 2.7 × 10−3, so a “gain” of about
a factor 60 for the losses. An extra factor about 2 (corre-
sponding to losses as low as 1.2×10−3) can be gained if we
remove the parabolic part of the thermal lens. Heating the
cold parts of the mirror seems then of great benefit, but
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Fig. 6. Thermal lens profiles for respectively Pabs ' 3.8 W
(10 times too low), Pabs ' 38 W (optimal case) and Pabs '
380 W (10 times too high). In the optimal case, we note the
flatness of the lens in the central part of the mirror.

the obvious drawback is that a large amount of light power
has to be dissipated, about 38 W for the optimal case (that
gives a dissipated intensity I0 ' 3 W/cm2), that means a
source of yet higher power. If we imagine a battery of laser
diodes around the mirror, delivering say 1 W each, at least
38 of them will be needed. In order to understand why so
large powers are needed, let’s take a look at the shapes at
the profiles of the thermal lenses in the optimal case and
for too low or too high absorbed powers (see Fig. 6). We
note that the total thermal lens has a quite perfect flat
profile at the center of the mirror. This compensation for
the thermal lensing due to absorption of the main beam
can be only achieved for a particular power absorbed from
the extra beam. If the absorbed power is too low or too
high, then there remains a concave or convex lens.

4 Compensation by absorption
in the substrate of an attenuated
ring-shaped beam

We now consider the physically different case of an exter-
nal ring-shaped beam propagating parallely to the main
beam and being (strongly) absorbed by the mirror sub-
strate. We just saw in the previous section that, in order
to be efficient, the external beam must deposit a large
amount of power in the substrate. That indicates that in
the case now considered the extra beam will be strongly
attenuated along its propagation through the mirror. We
have then to solve the heat equation with an extra source
of heat being the absorbed light intensity. As in the previ-
ous section we adopt a ring-shaped profile for the intensity
but with now an attenuation along z. We suppose that the

new light source is in the intra-cavity side, but it can be in
the other side, it will give exactly the same new thermal
lens. The intensity can be then written as

Ie(r, z) =

{
0 if r < a1

I0e−α2(z+h/2) if a1 ≤ r ≤ a2
(25)

where α2 is the lineic absorption of silica at the wavelength
of the new light beam. Note that by choosing wavelengths
near 0.5, 1.4 or 3 µm (OH absorption bands), we can have
values of α2 in the range 0.1 to 0.95 cm−1 [17,18]. We note
also that we can have a priori an external radius a2 of the
beam lesser than the mirror radius.

We have now to solve the Heat equation:

−K∆T = α2Ie(r, z). (26)

The general solution of the homogeneous equation has al-
ways the form of equation (6). We have to add a particular
solution of (26) to the later. Such as a particular solution
can be looked for under the form

∑
tme−α2zJ0(kmr) and

we find:

tm =
α2

K

p
(e)
m

k2
m − α2

2

e−α2h/2. (27)

The solution is finally:

T (r, z) =
∑
m

(
Amekmz +Bme−kmz

+
α2

K

p
(e)
m

k2
m − α2

2

e−α2(h/2+z)

)
J0(kmr). (28)

The boundary condition equation (3) gives again that
ζm = km × a is the mth zero of xJ1(x) − τJ0(x), and
the two others equation (4) (with ε = 0) and equation (5)
give:

Am =
α2

K

p
(e)
m

k2
m − α2

2

e−α2h/2

× (α2a− τ)(τ + ζm)e−α2h + (α2a+ τ)(τ − ζm)e−kmh

(ζm + τ)2 − (ζm − τ)2e−2kmh

(29)

Bm = −α2

K

p
(e)
m

k2
m − α2

2

e−α2h/2

× (α2a+ τ)(τ + ζm) + (α2a− τ)(τ − ζm)e−(α2+km)h

(ζm + τ)2 − (ζm − τ)2e−2kmh
·

(30)
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The thermal lens due this temperature field is derived from
equation (14):

Ψ(r) =
dn
dT

∑
m

p
(e)
m

K (k2
m − α2

2)

×
(
α2

km

(α2a− τ)e−α2h − (α2a+ τ)
(ζm + τ)− (ζm − τ)e−kmh

×
(
1− e−kmh

)
+
(
1− e−α2h

))
J0(kmr). (31)

We obtain then the total temperature field by superposi-
tion of the field due to absorption of the main beam (in
the coating and in the substrate) and of the field due to
absorption of the auxiliary ring-shaped beam. The same
for the thermal lens. Let’s notice that the absorbed power
in the substrate from the auxiliary beam is

Pabs =
∫ h/2

−h/2
α2e−α2(h/2+z)P0 dz

= P0

(
1− e−α2h

)
= α2hP0

(
1− e−α2h

α2h

)
(32)

where P0 = 2π
∫
I0r dr = I0π

(
a2

2 − a2
1

)
.

There are now four free parameters in this part: the
extra beam inner radius a1 and outer radius a2, the power
of the source P0 and the absorption α2 at the wavelength
of the source. The two last ones can be merged into a single
one, that is the absorbed power. We will see indeed that
the results actually do not depend on P0 and α2 but simply
on Pabs.

As a first example, Figure 7 shows the losses in-
duced by the total thermal lens as a function of Pabs for
a1 = 2 cm, a2 = a and α2 = 0.2 /cm, that is a penetration
factor 1− exp(−α2h) ' 0.865. We note that the minimal
losses are (again) of the order of 2.7 × 10−3 and are ob-
tained with Pabs ' 38 W. If we allow now α2 to vary, we
find in fact the same kind of results: minimal losses about
2.7 × 10−3 for the same absorbed power about 38 W. If
we optimise now with respect to a1 and a2, we find, just
as in the previous section, an optimum at a1 ' 2 cm
(corresponding to the size w0 of the main beam) and at
a2 ' 19 cm, just below the mirror radius a ' 20 cm.

The minimal losses achievable by this method are L '
2.6× 10−3, and are given by a1 ' 2 cm, a2 ' 19 cm and
whatever the value of α2. Of course the higher α2, the
smaller the needed source power P0. It has to be noticed
that the parabolic part removal from the thermal lensing
doesn’t improve the minimal losses here. There is actually
a gain when the absorbed power is well below or above, but
not around the optimal value (about 38 W), for which the
lens is almost perfectly flat at the center of the mirror and
parabolic removal can not improve anything anymore. The
minimal losses quoted above are then an absolute limit for
this method.

The conclusions of this section are then similar to the
previous one, except that there can not be any extra gain
due to parabolic lens removal. In both case, in the optimal

Fig. 7. Losses a as a function of the power absorbed from the
extra beam. The parameters are a1 = 2 cm, a2 = 20 cm and
α2 = 0.2/cm. The losses are minimal for the quite large power
Pabs ' 38 W.

absorption case, the mean temperature of the mirror is
about 20 K. The approximation of low heating (T � Te)
is still reasonable (error on the radiative flux calculation
less than 10%).

5 Compensation by fixing the mirror
circumference temperature

5.1 Heat equation general solution and boundary
conditions

We suppose in this section that the temperature of the
mirror circumference is fixed to a temperature T0 by some
thermostat (for instance an electric blanket or some equiv-
alent device). We always suppose that the vacuum tank
is at the temperature Te, that is the temperature “seen”
by the mirror sides at z = ±h/2. From now on, we will
take T0 as the reference temperature, and T (r, z) will then
denote the deviation from this reference. The heat flux,
equation (1) is in this case:

F = σ
(
(T0 + T )4 − T 4

e

)
' 4σT 3

e T + 4σT 3
e (T0 − Te).

(33)

We will then have the same expression for the radiative
flux on the mirror sides, except that appears a supplemen-
tary (constant) term that we will note C = 4σT 3

e (T0−Te).
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Fig. 8. RMS of the distribution of
P

2J0(kmr)/ζmJ1(ζm) for
a sampling of r in [0, a] as a function of N , number of terms
in the series. The RMS is minimal for N ' 700.

The boundary conditions can now be expressed as:

−K∂T

∂r
(r = a, z) = 0 (34)

−K∂T

∂z
(r, z = h/2) = 4eσTe3T (r, z = h/2) + C (35)

−K∂T

∂z
(r, z = −h/2) = εI(r)

− 4eσTe3T (r, z = −h/2)− C. (36)

We solve the Heat equation as in Section 2. A general solu-
tion of the homogeneous Heat equation is always given by
equation (6). The first boundary condition equation (34)
implies that the km are now defined as ζm = km × a are
the zeros of J0(x). The functions J0(kmr) form again a
complete orthogonal set with the normalization condition
given by [14]∫ a

0

J0(kmr)J0(knr)r dr =
1
2
a2J1(ζm)2δnm. (37)

The Gaussian beam intensity can always be expanded on
this set, and the expression of the pm has to be modified
in accord with the new normalization constants:

pm =
P

πa2

1
J1(ζm)2

exp
(
−k2

mw
2
0

8

)
(38)

with the same notations as in Section 2.
In the two other boundary conditions, the constant C

can be expanded on the set of the J0(kmr). If we note
C =

∑
cmJ0(kmr), we have:

cm =
2

a2J1(ζm)2

∫ a

0

CJ0(kmr)r dr. (39)

We note that this amounts to compute the Hankel trans-
form of a radial window function, and after a simple cal-
culation, using that the derivative of xJ1(x) is xJ0(x), we
find

cm =
2C

ζmJ1(ζm)
· (40)

In practice, the number N of terms to consider in the Dini
Series will be fixed by the condition

1 '
N∑
m=1

2J0(kmr)
ζmJ1(ζm)

∀r ∈ [0, a[. (41)

From Figure 8, we see there is an optimum at N ' 700,
and, consequently we will chose N = 700 in the following.
Note that for all the previous numerical results, we have
chosen N = 50, which was actually comfortable.

5.2 Absorption in the coating

In the case of absorption in the coating, the boundary
conditions equation (35) and equation (36) become:

−K
(
kmAmekmh/2 − kmBme−kmh/2

)
=

τK

a

(
Amekmh/2 +Bme−kmh/2

)
+ cm (42)

−K
(
kmAme−kmh/2 − kmBmekmh/2

)
=

εpm −
τK

a

(
Ame−kmh/2 +Bmekmh/2

)
− cm. (43)

The solution of the system is then, after a straightforward
calculation,

Am =
a

K
e−kmh/2

× (εpm − cm)(ζm − τ)e−kmh − cm(ζm + τ)
(ζm + τ)2 − (ζm − τ)2e−2kmh

(44)

Bm =
a

K
e−kmh/2

× (εpm − cm)(ζm + τ)− cm(ζm − τ)e−kmh

(ζm + τ)2 − (ζm − τ)2e−2kmh
· (45)

So we have the solution of the Heat equation for heating
in the coating by absorption of the Gaussian beam by the
Dini series equation (6).

The thermal lens is again calculated from equation (14)
and from the temperature Dini expansion:

Ψ(r) =
dn
dT

a

K

∑
m

εpm − 2cm
km

× 1− e−kmh

(ζm + τ) − (ζm − τ)e−kmh
J0(kmr). (46)

Of course, if C = 0, that is all the cm vanish, we find again
the expression of equation (15), the only difference being
then the definition of the km.
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5.3 Absorption in the substrate

The solution of the Heat equation (Eq. (2)) is again the
superposition of the general solution of the homogeneous
equation ∆T = 0 and a particular solution. The solution
has again the form of equation (16), and, this time, the
two boundary conditions equation (35) and equation (36)
give:

Am = Bm =
ταpm
Kk2

m
+ acm

K

(ζm + τ) − (ζm − τ)e−kmh
e−kmh/2 (47)

so that the temperature is:

T (r, z) =
∑
m

(
αpm
Kk2

m

−
ταpm
Kk2

m
+ acm

K

(ζm + τ) − (ζm − τ)e−kmh

×
(

e−km(h/2+z) + e−km(h/2−z)
))

J0(kmr). (48)

After integration of equation (14), we find the thermal
lens profile:

Ψ(r) =
dn
dT

∑
m

(
αhpm
Kk2

m

− 2
km

ταpm
Kk2

m
+ acm

K

(ζm + τ) − (ζm − τ)e−kmh

×
(
1− e−kmh

))
J0(kmr). (49)

If all the cm = 0, we find again the same expression as
equation (18).

5.4 Numerical results

The only free parameter in this compensation method is
the temperature T0 of the thermostat (if the tempera-
ture Te of the surrounding vacuum tank − the tower − is
fixed). Figure 9 shows the total losses as a function of the
thermostat temperature. We note there is a minimum oc-
curring for T0 ' 311 K, so a temperature rise about 15 K
with respect to the tower temperature. But the minimum
is rather high, about L ' 1.2×10−2, so one order of mag-
nitude larger than the minimal losses obtained with the
other compensation methods described in previous sec-
tions. Clearly this method is not competitive. Removing
the parabolic part does not help much here and changing
the temperature Te does not change roughly the results.
For sake of completeness, Figure 10 shows the temperature
and thermal lens profile for the optimal thermostat tem-
perature (T0 ' 311 K). We note an average temperature
mirror less than 10 K and a roughly (but not sufficiently)
flat profile of the thermal lens at the center of the mirror

6 Sapphire substrates

It is already well known that replacing silica substrates
by sapphire ones can already improve the situation. For

Fig. 9. Losses a as a function of the thermostat temperature.
The tower temperature is fixed to Te ' 300 K.

Fig. 10. Top: temperature field in the mirror. Bottom: thermal
lens profile. Parameters: Te = 300 K and T0 = 311 K (optimum
case).

example, for the VIRGO “upgrade” situation, the losses
due to the thermal lensing can be decreased from L ' 0.16
to L ' 1.2× 10−3 if we simply replace silica by sapphire.
This is simply due to the much larger conductivity of sap-
phire (K ' 33.0 W m−1 K−1 vs. K ' 1.38 W m−1 K−1

for silica). If we use in addition a compensation method,
we can have even better results. In the case of compensa-
tion by absorption of a ring-shaped beam (Sects. 3 and 4),
the losses can be decreased down to L ' 1.7× 10−5, that
is 17 ppm (1.1 × 10−5 − 11 ppm − with parabolic part
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removal). The drawback is that this optimum is reached
with a larger absorbed power Pabs ' 46 W than in the sil-
ica case (Pabs ' 38), but it is not a dramatical increase of
the needed extra-source light power. Note that in the case
of compensation with the help of a thermostat (Sect. 5),
we can achieve losses less than 10−3, but this requires a
fine tuning of the thermostat temperature by a fraction of
degree in excess from the tower temperature, something
non realistic (for example if compared to the tower tem-
perature inhomogeneities).

7 Influence of the beam size

Increasing the beam size is also a way to decrease the in-
tensity absorbed in the mirrors, and so a way to decrease
the thermal gradients. In this section, we are going to
study the influence of the (main) beam size on the ther-
mal losses and, in particular, the impact of a compensation
method. Note that in the “advanced LIGO” concept, large
beam sizes are planned to be used, typically w0 ' 5.5 cm
in case of silica substrates [12]. We show only results for
the compensation method by absorption of a ring-shaped
beam (see Sects. 3 and 4), since the last method (Sect. 5)
is not competitive. For each beam size, the minimal losses
are found (1) by optimising the inner radius of the ring-
shaped beam (2) by optimising the absorbed power. We
find that the minimal losses are roughly independent of
the main beam size, but, what is changing is the opti-
mised absorbed power from the extra beam. The minimal
losses are L ' 2×10−3 (if w0 ≥ 3 cm) and the needed ab-
sorbed power decreases down to about 4.5 W for a beam
size w0 = 6 cm, instead of 38 W for a beam size w0 = 2 cm,
as shown by Figure 11. Increasing the beam size then does
not change the minimal possible losses, but it changes the
needed power to reach them. Note that the optimised in-
ner radius of the ring-shaped beam is generally found to
be of the order of the main beam size w0 (so that the cold
parts of the mirror are effectively heated by the compen-
sation beam).

8 The case of the advanced LIGO
configuration

It is interesting to state the potential of compensation
methods with a 2nd generation configuration for which the
design is well advanced and precise numbers are available.
For example, the “advanced LIGO” design plans either
silica substrates with absorption about 0.5 ppm/cm, mir-
ror dimensions a ' 19.4 cm and h ' 15.4 cm, a beam size
w0 ' 5.5 cm, 1.4 kW crossing the substrates and 530 kW
stored in the cavities or sapphire substrates with absorp-
tion around 40 ppm/cm, mirror dimensions a ' 15.7 cm
and h ' 13 cm, a beam size w0 ' 6 cm, 2.1 kW cross-
ing the substrates and 830 kW stored in the cavities. For
both cases, the coating absorption is expected at the level
of ε ' 0.5 ppm, hence a factor 2 better than today’s best
coatings. With such numbers, and without thermal com-
pensation, the losses for silica substrates are about 0.15,

Fig. 11. Power dissipated in an extra ring-shaped beam in
order to obtain minimal losses, as a function of the (main)
beam size. The minimal losses are in each case about 2×10−3.

while they are about 1.8 × 10−2 for sapphire substrates.
It is clear again that thermal compensation is needed for
this precise configuration, whatever the substrate mate-
rials, unless absorptions can be drastically lowered. It is
not likely to be much the case for silica, but prospects
for sapphire are more optimistic, and absorption around
20 ppm/cm or less, as already observed in small sam-
ples [19], is not out of reach. With thermal compensa-
tion using an extra ring-shaped beam, the minimal losses
achievable with silica substrates are found to be about
5×10−3 (less than 2×10−3 with removal of the parabolic
part). This result means already (at least) losses around
1% only due to thermal lensing in input mirrors of the
kilometric cavities. This is not encouraging for using sil-
ica substrates. With sapphire substrates now, Figure 12
shows the minimal losses as a function of the absorption
in the range 10–50 ppm/cm (since it is today like a free
parameter that will probably evolve favourably). Already
with absorption about 40 ppm/cm, sapphire does better
than silica, with losses about 10−3 (2×10−4 with parabolic
part removal). With absorption about 20 ppm/cm, the
losses decrease down to about 460 ppm (some tens of ppm
with parabolic part removal). With sapphire substrates
and thermal compensation, thermal lensing should not be
longer a source of concern for the good working of the
interferometer.

9 Conclusions

In this paper, we have theoretically investigated several
means to compensate for thermal effects in mirrors of (ad-
vanced) interferometric detectors of gravitational waves.
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Fig. 12. Losses (in ppm) vs. the sapphire substrate absorption.
For each absorption, the losses are optimised with respect to
the inner radius of the compensation beam and to the absorbed
power from this beam.

The best method seems to heat the cold parts of the sub-
strates by absorption of a ring-shaped beam, while the
method of thermostating the circumference of the mirror
is clearly not competitive. With the VIRGO numbers, sil-
ica substrates and absorption coefficients ε = 1 ppm and
α = 1 ppm/cm, and in case of increase of the circulating
powers by a factor 10, the losses can be lower down to
L ' 2.7× 10−3, vs. L ' 0.16 if nothing is done.

A factor about 2 can still be gained if we can remove
the parabolic part of the thermal lens, but this supposes
that the thermal lenses are well symmetric between the
two arms of the interferometer. For a beam sizew0 = 2 cm,
the order of magnitude of the light source power needed
to achieve the minimal losses value is larger than about
40 W, since an absorbed power of about 38 W is required.
This needed power can be lowered with a larger beam
size. For instance, only 4.5 W are needed to be absorbed
if w0 = 6 cm, that means a gain of almost one order of
magnitude for the required power. Of course the beam size
cannot be increased much further due to the finished size
of the mirrors (typically not larger than 20 cm).

Now, again with the example of the VIRGO numbers,
if we want a gain of one order of magnitude for the shot-
noise limited sensitivity, that means an increase of the
circulating powers by a factor 100 this time. If the absorp-
tion coefficients in the coatings and in the silica substrates

can not be decreased by at least one order of magnitude,
it is then clear that we will have to give up the silica for
the substrates, in favour of sapphire for instance, since it
will no longer be possible to compensate for thermal gra-
dients (the compensation methods can not do miracles:
e.g. with Pcoat ∼ 1 MW, Psub ∼ 100 kW, ε = 1 ppm and
α = 1 ppm/cm, the losses can not be lower than 97%!).
This means finally that the mirror R&D effort needed for
future upgrades has two options: either going on with silica
substrates and improve absorption coefficients at 1.064 µm
(better coating technology, lesser OH radicals in the sub-
strate...) or stopping with silica technology and developing
substrates with other materials like sapphire. Numerical
results obtained with the advanced LIGO configuration
are unambiguous regarding the substrate materials: sap-
phire is (will) be better.
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